X荧光光谱技术的发展
1959年我国从苏联引入了照相式X荧光光谱仪,这是中国次引进X荧光光谱分析仪。 1895年,德国物理学家伦琴发现了X射线。 1896年,法国物理学家乔治发现了X射线荧光。 1948年,弗里德曼和伯克斯研制了台商品性的波长色散X射线荧光光谱仪。
1969年,美国海军实验室研制出台真正意义上的EDXRF光谱仪。
X荧光光谱仪的产生初始过程
从上面的X荧光光谱仪的初始发展过程来看,荧光光谱分析仪这项技术比较年轻,从发现X射线荧光到出现X射线荧光光谱分析仪都不过一**,后应用到各种领域中的时间也才几十年。同样,我国X荧光光谱分析也是光谱分析领域中较年轻的分析手段之一,1959年,我国请苏联*来华在应化所举办了x光谱学习班,随后,我国不断开展X荧光光谱学习班,为之后中国X荧光光谱分析技术打好了基础。
1981年,我国X光谱分析工作者出版了自己编著的书籍,由此可见,在这些年中,我国研究X荧光光谱的学者们做了不少的工作。
荧光,顾名思义就是在光的照射下发出的光。
从原子物理学的知识我们知道,对每一种化学元素的原子来说,都有其特定的能级结构,其核外电子都以各自特有的能量在各自的固定轨道上运行,内层电子在足够能量的X射线照射下脱离原子核的束缚,成为自由电子,我们说原子被激发了,处于激发态,这时,其他的外层电子便会填补这一空位,也就是所谓跃迁,同时以发出X射线的形式放出能量。由于每一种元素的原子能级结构都是特定的,它被激发后跃迁时放出的X射线的能量也是特定的,称之为特征X射线。通过测定特征X射线的能量,便可以确定相应元素的存在,而特征X射线的强弱(或者说X射线光子的多少)则代表该元素的含量。
**力学知识告诉我们,X 射线具有波粒二象性,既可以看作粒子,也可以看作电磁波。看作粒子时的能量和看作电磁波时的波长有着一一对应关系。这就是*的普朗克公式:E=hc/λ。显然,无论是测定能量,还是波长,都可以实现对相应元素的分析,其效果是完全一样的
顺序式波长色散X荧光光谱仪(以下简称“光谱仪”)的工作原理是用X射线照射试样,使试样中的元素被激发出各自特征波长的荧光X射线;再通过光路设计,利用布拉格衍射原理,使用晶体将这些特征X射线按波长色散开来,并测量其强度,终进行定性和定量分析。它的基本结构主要是由高压电源、X射线管、滤光片、原级准直器、分光晶体、二级准直器、探测器和测角仪组成。
在光谱仪中,滤光片的作用是消除或降低来自X射线管发射的原级X射线谱,尤其是靶材的特征X射线谱对待测元素的干扰,可以改善峰背比,提高分析的灵敏度。准直器分原级准直器和二级准直器两类。在样品和晶体之间的准直器称原级准直器(又称为入射狭缝),其作用是将样品发射出的X射线荧光通过准直器变为平行光束照射到晶体。晶体主要起分光作用,实际使用中需要多块晶体以满足不同的元素测试需求。光谱仪一般配备有4个滤光片、3个准直器和8个分光晶体。在分析测试样品时,为了获得佳的分析结果,滤光片、准直器和晶体需要根据测试流程进行切换。切换过程中,上述器件的重复定位精度会影响到测量结果的精密度,同时也是《检定规程》必检项目。
X荧光光谱仪分析方法是一个相对分析方法,任何制样过程和步骤必须有非常好的重复操作可能性,所以用于制作标准曲线的标准样品和分析样品必须经过同样的制样处理过程。X 射线荧光实际上又是一个表面分析方法,激发只发生在试样的浅表面,必须注意分析面相对于整个样品是否有代表性。此外,样品的平均粒度和粒度分布是否有变化,样品中是否存在不均匀的多孔状态等。样品制备过程由于经过多步骤操作,还必须防止样品的损失和沾污。
1、由样品制备和样品自身引起的误差:
(1) 样品的均匀性。
(2) 样品的表面效应。
(3) 粉末样品的粒度和处理方法。
(4) 样品中存在的谱线干扰。
(5) 样品本身的共存元素影响即基体效应。
(6) 样品的性质。
(7) 标准样品的化学值的准确性。
2、引起样品误差的原因:
(1)样品物理状态不同,样品的颗粒度、密度、光洁度不一样;样品的沾污、吸潮,液体样品的受热膨胀,挥发、起泡、结晶及沉淀等。
(2)样品的组分分布不均匀 样品组分的偏析、矿物效应等。
(3)样品的组成不一致 引起吸收、增强效应的差异造成的误差
(4)被测元素化学结合态的改变 样品氧化,引起元素百分组成的改变;轻元素化学价态不同时,谱峰发生位移或峰形发生变化引起的误差。
(5)制样操作 在制样过程中的称量造成的误差,稀释比不一致,样品熔融不完全,样品粉碎混合不均匀,用于合成校准或基准试剂的纯度不够等。
3、样品种类样品状态一般有固体块状样品、粉末样品和液体样品等。
(1)固体块状样品 包括黑色金属、有色金属、电镀板、硅片、塑料制品及橡胶制品等,其中金属材料占了很大的比例。
(2)粉末样品 包括各种矿产品,水泥及其原材料,金属冶炼的原材料和副产品如铁矿石、煤、炉渣等;还有岩石土壤等。
(3)液体样品 油类产品、水质样品以及通过化学方法将固体转换成的溶液等。